
Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

This content is based upon work supported by the US Department of Homeland Security's Cybersecurity & Infrastructure Security Agency under
the Cybersecurity Education Training and Assistance Program (CETAP).

1

LESSON NOTES
Intro to Linux

System Management
1.4.2 Process Management

Lesson Overview:

Students will:
• Understand how to manage processes on a system

Guiding Question: How are processes managed on a system?

Suggested Grade Levels: 9 - 12

Technology Needed: None

CompTIA Linux+ XK0-005 Objective:

1.4 - Given a scenario, configure and use the appropriate processes and services
 • Process management

 ₀ Kill signals ₀ Process states ₀ pgrep
 ₋ SIGTERM ₋ Zombie ₀ pkill
 ₋ SIGKILL ₋ Sleeping ₀ pidof
 ₋ SIGHUP ₋ Running

 ₀ Listing processes and open files ₋ Stopped
 ₋ top ₀ Job control
 ₋ ps ₋ bg
 ₋ lsof ₋ fg
 ₋ Htop ₋ jobs

 ₀ Setting priorities ₋ Ctrl+Z
 ₋ nice ₋ Ctrl+C
 ₋ renice ₋ Ctrl+D

2Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Process Management
Process management is a critical aspect of efficiently handling and controlling the execution of programs
on a computer system. In the realm of Unix-like operating systems, understanding and mastering process
management tools and techniques are essential for system administrators and users alike. This involves
the ability to send signals to processes for graceful termination or immediate termination, monitoring
and listing processes and their associated files, adjusting process priorities, recognizing different process
states, and employing job control mechanisms to manage foreground and background tasks effectively.
The tools mentioned, such as top, ps, lsof, htop, nice, renice, and the concepts of job control and process
states, empower users to navigate and optimize the execution of programs, ensuring a smoothly running
system. Additionally, utilities like pgrep, pkill, and pidof provide efficient ways to identify and manage
processes based on their attributes. This foundational knowledge is invaluable for anyone working in a
Unix-like environment, enabling them to maintain system stability and responsiveness.

Kill Signals

Kill signals play a crucial role in managing processes by signaling them to perform specific actions. The
following is an expanded explanation of each signal.

SIGTERM is a graceful way to request a process to terminate. When a process receives SIGTERM, it’s
expected to perform cleanup activities before exiting. This allows the process to release resources,
close files, and generally ensure a smooth termination. It’s often the default signal sent by commands
like kill and is a way to politely ask a process to shut down. Consider a server process that needs to save
its state or perform other cleanup tasks before shutting down. Sending SIGTERM gives the process an
opportunity to do this before exiting.

SIGKILL is a more forceful signal that immediately terminates a process without giving it a chance to
perform any cleanup. It’s a powerful signal and should be used with caution because it doesn’t allow the
process to release resources or clean up files—it simply terminates the process abruptly. When a process
is unresponsive or refuses to terminate gracefully after receiving SIGTERM, SIGKILL can be used as a last
resort to forcefully end the process.

SIGHUP is historically associated with the hangup event on a terminal. When the terminal is closed or a
connection is lost, a SIGHUP signal is sent to processes associated with that terminal. In the context of
process management, SIGHUP is often used to instruct a process to reload its configuration or restart.
Imagine a daemon process running in the background that reads a configuration file. Instead of restarting
the entire process, sending SIGHUP to the process prompts it to reload its configuration, allowing for
dynamic updates without a full restart.

Listing Processes and Open Files

The tools for listing processes and open files provide valuable insight into the activities happening on a
system. The following is a more detailed explanation of each.

top (intentionally lowercase) is a dynamic, real-time process viewer that provides a continuously updated

3Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

display of system processes. It offers a comprehensive overview of CPU usage, memory usage, running
processes, and other system statistics. The display is interactive, allowing users to sort and filter processes
based on various criteria. Administrators often use top to monitor system performance, identify resource-
intensive processes, and get a real-time snapshot of the system’s health. Its dynamic nature makes it
especially useful for detecting sudden changes in resource usage.

ps (Process Status) is a command-line utility that displays information about processes running on
the system. It provides a static snapshot of the current processes, showing details such as process IDs
(PIDs), CPU and memory usage, and the command that started each process. ps is commonly used for
troubleshooting and obtaining a quick overview of the processes running on the system. Different
options can be used to customize the output and focus on specific information, making it a versatile tool
for process inspection.

lsof (List Open Files) is a powerful command that lists open files and the processes that have them
open. It provides detailed information about files, sockets, and devices that processes are currently
using. This includes network connections, files being read or written, and more. lsof is invaluable for
troubleshooting scenarios where you need to identify which processes are accessing specific files or
ports. It aids in understanding the relationships between processes and the files they interact with, making
it a crucial tool for system administrators and developers.

htop is an interactive and user-friendly process viewer, similar to top but with enhanced features. It
provides a colorful and visually appealing representation of system processes, allowing users to scroll,
search, and navigate through the process list more conveniently. htop is preferred by many users for its
improved usability over top. It allows users to interactively manage processes, send signals, and easily
identify resource-hungry processes. The visual design and keyboard shortcuts make it a popular choice
for monitoring and managing processes in real-time.

Setting Priorities

Setting priorities for processes is a way to influence their execution in relation to other processes
on a system. The nice command and renice utility are tools that allow users to manage the priority of
processes. The following is a more detailed explanation of each.

The nice command is used to launch a new process with a specified priority level. In Unix-like systems,
processes are assigned a priority value that determines how much CPU time they receive. The priority
values typically range from -20 to 19, where lower value indicates higher priority. The nice command
allows a user to start a new process with a specific priority level. The syntax is nice -n <priority>
<command>. Users can use nice to launch a process with adjusted priority, ensuring that it gets more,
or less, CPU time compared to other processes. For example, to start a process with a lower priority, you
could use nice -n 10 command.

The renice command is used to change the priority of an already running process. It allows users to
dynamically adjust the priority of a process while it’s running. Similar to nice, the priority values range
from -20 to 19. The syntax is renice <priority> -p <PID> Administrators or users may need to
adjust the priority of a running process based on the system’s workload. For example, to decrease the
priority of a process with PID 1234, you could use renice +5 -p 1234 to give it a lower priority.

4Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

Process States

Process states represent the various stages a process goes through during its lifecycle, indicating its
current status and activity.

A Zombie process is one that has completed its execution but still has an entry in the process table.
This entry is retained until the parent process retrieves the exit status of the terminated child process.
Zombies consume minimal system resources but indicate a flaw in process management if they persist
for an extended period without being reaped by the parent. Zombie processes often occur when a parent
process fails to use the wait system call to retrieve the exit status of its terminated child processes.
Properly managing child processes and collecting their exit status helps prevent the accumulation of
zombie processes.

A Sleeping process is in a state of dormancy, waiting for a specific event to occur. This event could be the
completion of an I/O operation, a timer reaching its expiry, or the reception of a signal. While a process
is sleeping, it is not actively consuming CPU resources, allowing the system to efficiently use available
resources. Many processes spend a significant amount of time in the Sleeping state, especially those
waiting for user input, file operations, or network communications. This state is essential for optimizing
resource utilization and responsiveness.

A Running process is actively executing instructions on the CPU. This is the state where a process is using
system resources to perform its designated tasks. In a multitasking environment, multiple processes may
be in the Running state, with the operating system rapidly switching between them to give the illusion
of simultaneous execution. The Running state is the active phase of a process, where it is performing
computations, responding to user input, or executing other instructions. Processes transition in and out of
the Running state as the operating system schedules their execution.

A Stopped process is one that has been halted or suspended, usually by the receipt of a signal. This
could be a user-initiated action or the result of a system event. Stopped processes do not consume
CPU resources, and they can be resumed later by sending an appropriate signal. The Stopped state is
commonly encountered when a user presses Ctrl+Z to suspend a foreground process. The process can
be resumed with the fg command to bring it back to the foreground or bg to continue its execution in the
background.

Job Control

Job control refers to the management of processes in the foreground and background, allowing users
to interact with and control the execution of tasks. Here’s a detailed explanation of each aspect of job
control:

The bg (background) command is used to put a currently suspended or stopped process in the
background, allowing it to continue its execution independently of the terminal. This is particularly useful
when a process needs to run in the background without blocking the terminal for other tasks. Suppose
you have suspended a process using Ctrl+Z and want it to continue running in the background while you
perform other tasks in the terminal. You can use bg followed by the job ID or % sign and job number to
achieve this.

5Copyright © 2024 Cyber Innovation Center
All Rights Reserved. Not for Distribution.

The fg (foreground) command brings a background process to the foreground, making it the active task
in the terminal. This is useful when you want to interact with a background process or monitor its output
directly. If a process is running in the background, you can use fg followed by the job ID or % sign and job
number to bring it back to the foreground, allowing you to interact with it.

The jobs (list jobs) command lists the jobs that are currently running or stopped in the background. It
provides information about the job ID, status, and the command associated with each job. When multiple
processes are running in the background, you can use jobs to get an overview of their status. This is
helpful for identifying the job IDs needed for bg or fg commands.

Pressing Ctrl+Z suspends the currently running foreground process, putting it in a stopped state. The
process is moved to the background, and you can use bg or fg to manage it further. If you want to
temporarily stop a foreground process and move it to the background, you can use Ctrl+Z to suspend it.

Pressing Ctrl+C sends an interrupt signal to the currently running process in the foreground, typically
causing it to terminate. It’s a way to forcefully stop a process. When a process is unresponsive or needs to
be terminated abruptly, Ctrl+C is often used to send an interrupt signal and stop the process.

Ctrl+D is used to send an end-of-file (EOF) signal. In the context of a terminal, it can be used to indicate
the end of input or to logout from a session. In some contexts, such as when entering input in a terminal,
Ctrl+D can be used to signal the end of the input stream.

Pgrep, Pkill, and Pidof

The commands pgrep, pkill, and pidof are essential for identifying and managing processes based on
various criteria.

pgrep (process grep) is a command-line utility that searches for processes based on their name or other
attributes and prints the process IDs (PIDs) of matching processes. It provides a simple and convenient
way to find processes without the need for complex commands. If you want to find the PID of a process
by specifying its name, you can use pgrep followed by the process name. For example, pgrep firefox
would return the PID of the Firefox process.

pkill (process kill) is a command that sends a signal to processes based on their name. Instead of
manually finding and specifying PIDs, pkill simplifies the process by allowing users to target processes
using their names. By default, pkill sends the SIGTERM signal. To gracefully terminate a process by name,
you can use pkill followed by the process name. For example, pkill firefox would send the SIGTERM
signal to terminate all processes with the name “firefox.”

pidof is a command that obtains the process ID (PID) of a running program based on its name. It returns
the PID of the first process found with the specified name. If you need to quickly obtain the PID of a
running process, you can use pidof followed by the process name. For instance, pidof firefox would
return the PID of the running Firefox process.

